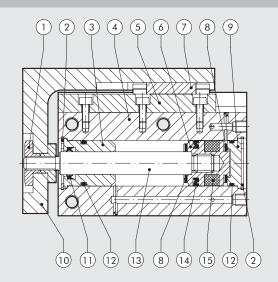
PRECISION SLIDE SERIES \$13

Series \$13 precision slides feature a dual-acting pneumatic cylinder that has the sole purpose of pushing and pulling the load, a ground steel guide that is integral with the body, and a ball recirculation pad that is fixed onto the moving table and is designed to withstand all the loads and movements applied. This ensures accurate movement with virtually no play, and the piston rods do not suffer wear as there are no lateral loads.

All the slides are equipped with sensor magnets.


The body can be secured on many sides. The load side can be fixed onto the table from the top or the front. The compressed air supply can be connected on three sides. The retractable sensors can be fitted on the right or on the left. All these possibilities make the application extremely flexible. The width is extremely reduced to allow installation in small spaces and the combination of several reduced-pitch slides.

TECHNICAL DATA		Ø6	Ø 10	Ø 16	Ø 20		
Operating pressure	bar		2 to	8			
	MPa		0.2 to				
	psi		29 to				
Operating temperature	°C		-10 to				
Fluid		Lubricated and unlubric	cated compressed air at		rrupted when lubricated		
Minimum and maximum speed	mm/s		30 to	500			
Pneumatic fittings			M				
Type of guide			Ball reci				
Versions			Magnetic dual-actin	g with rubber buffer			
Strokes	mm	10	10	10	10		
		25	25	25	25		
				50	50		
Theoretical thrust force, at 6 bar	N	17	47	120	188		
Theoretical pull force, at 6 bar	N	13	40	104	158		
Admitted loads			See nex	ct page			
Admitted kinetic energy	Joule	0.012	0.025	0.050	0.100		
Stroke tolerance	mm		0/-	+1.0			
Assembly position		Any (horizontal and vertical)					
Weight	kg		See nex	ct page			

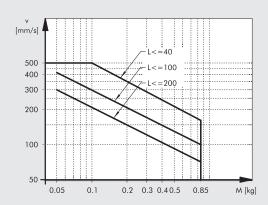
COMPONENTS

- 1) NUT: stainless steel
- ② SNAP RING: zinc-plated steel
- ③ FRONT BASE: bronze
- 4 BODY: anodized aluminium
- (5) GUIDE: tempered stainless steel
- 6 PISTON: aluminium
- BALL RECIRCULATION PAD: stainless steel
- 8 BUFFER: NBR
- REAR BASE: anodized aluminium
- n PLATE: anodized aluminium
- 1) PISTON ROD GASKET: type EM, NBR
- ② O-RING: NBR
- (3) PISTON ROD: stainless steel
- (4) PISTON GASKET: type PZ, NBR
- (5) MAGNET: neodymium (Ø 6 and Ø 10) plastoferrite (Ø 16 and Ø 20)

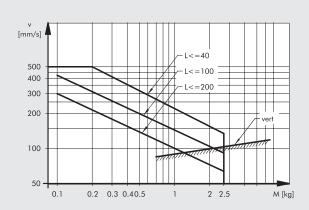

WEIGHTS

WEIGHT [gr]					
Stroke			Bore		
	6	8	16	20	
10	68	125	230	455	
25	90	160	280	550	
50			350	660	

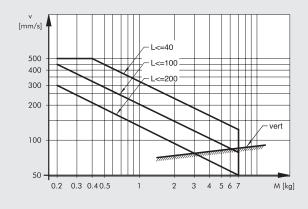
WEIGHT OF MOVING PART [gr]											
Stroke Bore											
	6	8	16	20							
10	30	50	100	180							
25	40	68	125	220							
50			167	290							

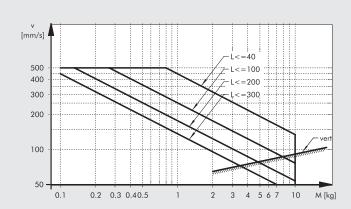

MASS/VELOCITY DIAGRAM

M (kg) = Mass applied
L (mm) = Distance between the axis of the piston rod and the barycentre of the mass
v (mm/s) = Velocity of the slide
vert = Limit with vertical movement



ADMITTED LOADS DIAGRAM

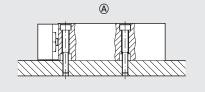

S13-6

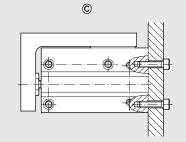

S13-10

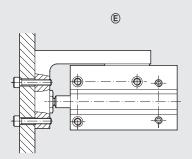
S13-16

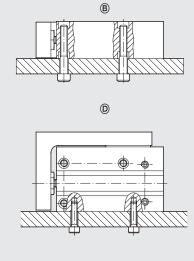
S13-20

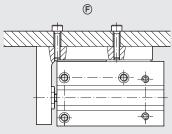
FIXING OPTIONS

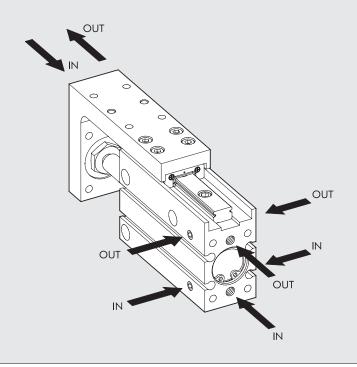

FIXING THE BODY


- A Lateral, via the through holesB Lateral, on the hole threads
- © Rear, on the threaded holes
- O Vertical, on the threaded holes

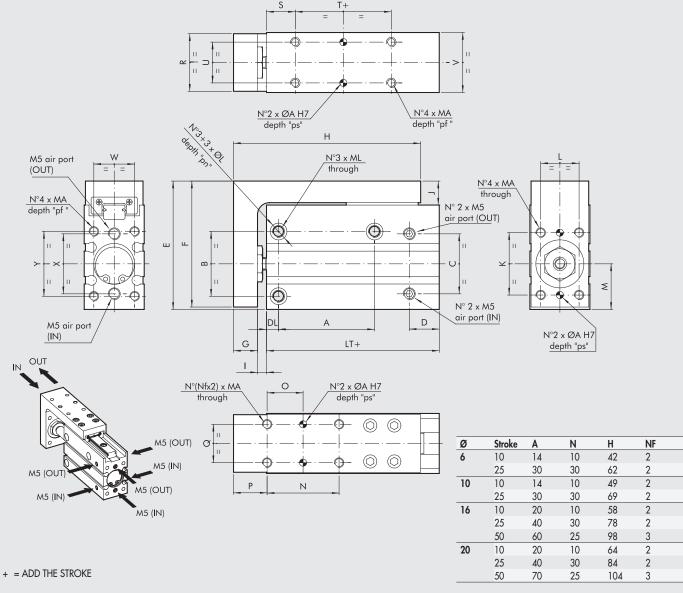

FIXING THE MOVING TABLE


- © Front, on the threaded holes
- © Top, on the threaded holes


N.B. Since the table is supported by a ball guide/pad, avoid applying excessive torques or forces. When securing the screws, hold the table, not the body, so that the torque discharges through the ball pad.


COMPRESSED-AIR SUPPLY

The compressed air supply can be from the back,


from the left or from the right.

The slide comes with holes on the left and right that are plugged with screws and O-ring seals.

If you wish to use the holes, remove the screws and O-rings and fix them in the holes in the back, applying a drop of adhesive to the screw thread.

DIMENSIONS

Code	Ø	LT	В	С	D	Е	F	G	I	J	K	MA	pf	ØA	ps	L	М	0	Р	Q	R	S
W1471063*	6	31	19	18	10	39	38	5.5	2.9	7.5	15	M3	5	2	4.5	9	14.5	N/2	8	9	15	10
W1471103*	10	35	23	20	12.5	47	46	7.5	4	9	18	M4	6	2	4.5	11	15.5	N/2	11	11	19	12
W1471163*	16	42	27	25	12.5	53.5	52.5	10	3.75	10	26	M4	7	3	7.5	16	19	N/2	14	16	24	12
W1471203*	20	52.5	34	32	15	64.5	63.5	11	4.5	10.5	34	M5	9	3	7.5	20	23	N/2	14	20	31	15

Ø	T	U	٧	W	Х	Υ	ØL	pn	ML	DL
6	5	9	16	10.5	18	19	6	3.5	M4	4
10	5	13	20	13	20	23	7.5	4.5	M5	5
16	10	17	25	17	25	27	7.5	4.5	M5	5
20	10	20	32	20	32	34	9.5	7.5	M6	6

^{*} Enter the stroke in mm (e.g. Ø 6 stroke 10=W1471063010)

Standard strokes:

Bore Ø 6 -> 10; 25 mm Bore Ø 10 -> 10; 25 mm Bore Ø 16 -> 10; 25; 50 mm

Bore \emptyset 16 -> 10; 25; 50 mm Bore \emptyset 20 -> 10; 25; 50 mm

ACCESSORIES

SENSOR Ø 4	
	For codes and technical data, see chapter A6 .
_A	
NOTES	